
30 Applications of the AdS/CFT Correspondence

30.1 Static Quark Potential

If we we stack N + 1 D3-branes in order to get an SU(N + 1) N = 4 gauge
theory and then pull one of the branes a distance u away, we break the gauge
symmetry to SU(N) and the stretched string states correspond to massive
gauge bosons with mass

mW =
u

α′
. (30.1)

These states transform as and of SU(N). In the limit u → ∞ such
a string behaves like an infinitely heavy (static) quark. If we have a static
quark and antiquark pair separated by a distance L on the boundary of
AdS5, the supergravity solution that minimizes the action is one where the
string stretches from the quark to the antiquark along a geodesic.

We can thus calculate the expectation value of a Wilson Loop in this
theory. For a infinitely heavy quark which traverses a closed curve C the
Wilson loop is

W (C) = TrP exp i
∫

C
A (30.2)

The AdS/CFT correspondence gives us that

〈W (C)〉 = e−α(D) (30.3)

where D is the surface of minimal area in AdS5 that has C as its boundary,
and α(D) is a regularized area of D. The surface D corresponds to the
string stretched between the quarks. We are allowed to subtract a term
proportional to the circumference of C, which corresponds to the action of
the widely separated heavy quarks. If C is a a square in Euclidean space of
width L and height T , then the expectation value of the Wilson loop gives
us the potential energy of the quark-antiquark pair:

〈W (C)〉 = e−TV (L) (30.4)

Using the metric

ds2 =
R2

z2
(dz2 +

4∑
i=1

dxidxi) (30.5)
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we see that as we scale the size of C by

xi → ρ xi (30.6)

we can keep α(D) fixed by scaling D:

xi → ρ xi (30.7)
z → ρ z , (30.8)

so α(D) is independent of ρ, or in other words α(D) is not proportional to
Area(C) ∼ ρ2. Extracting the potential one finds

V (L) ∼ −
√
g2N

L
(30.9)

the 1/L behavior is required by conformal symmetry, while the
√
g2N be-

havior is different from, but not in contradiction with, the perturbative
result.

30.2 Breaking SUSY: Finite Temperature

As is well known, if we take Euclidean time (tE = −it) to be periodic:

tE ∼ tE + β (30.10)

then

eitE → e−βE (30.11)

and we can get finite temperature 4 dimensional gauge theory. To do this we
must impose periodic boundary conditions on the bosons and anti-periodic
boundary conditions on the fermions. This leaves some zero-energy bo-
son modes, but no zero-energy fermion modes, so SUSY is broken. Scalars
will get masses from loop effects (gauge mediation) while gluons are pro-
tected by gauge symmetry. So the low-energy effective theory is pure non-
supersymmetric Yang-Mills. In the high temperature limit we get a zero-
temperature 3 dimensional gauge theory

In AdS Hawking and Page showed long ago that there is a phase transi-
tion. In the high temperature limit the partition function is dominated by
a black-hole metric with a horizon size proportional to the temperature.

The metric for black hole on AdS5 is:
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ds2

R2
=

(
u2 − b4

u2

)−1

du2 +

(
u2 − b4

u2

)
dτ2 + u2dxiidxi (30.12)

horizon size is b = πT . We can now check that the AdS/CFT correspondence
is in accord with our knowledge about non-supersymmetric non-Abelian
gauge theories. The main thing that we know about such theories is that
they confine.

30.3 Wilson Loops at High Temperature

Calculating the Wilson loop expectation value

〈W (C)〉 = e−α(D) (30.13)

with the black hole metric (30.12) we note that u is bounded by the horizon
b, so the minimal area of D is just its area at the horizon

α(D) = R2b2 Area(C) (30.14)

which corresponds to Area Law confinement, or a linear potential

V (L) = R2b2L . (30.15)

Note that the string tension is very large:

σ ∼ R2b2
√
g2N (30.16)

30.4 The Glueball Mass Gap

We also know that confining gauge theories should have a mass gap. To
see this recall that there is a massless scalar field Φ in AdS5 (the dilaton)
which couples to Tr F 2, and Tr F 2 has a non-zero overlap with states with
JPC = 0++. So calculating the two point function of this operator will give
us information about the mass of the 0++ glueball.

Inserting the black-hole metric (30.12) into the wave equation

∂µ [
√
ggµν∂νΦ] = 0 (30.17)

and looking for a plane wave solution on the boundary

Φ = f(u)eik.x (30.18)
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we find (we have set the momenta in S5 to zero, since non-zero values cor-
respond to heavier Kaluza-Klein (KK) modes)

u−1 d

du

((
u4 − b4

)
u
df

du

)
− k2f = 0 (30.19)

For large u we have f ∼ uλ where m2 = 0 = λ(λ+4) so as u→∞ either
f ∼ constant or f ∼ u−4. Only the second solution gives a normalizable
solution (and hence a finite action). We also need f must be regular at u = b,
which implies df

du is finite. This is essentially a wave guide problem. There
are no normalizable solutions for k2 ≥ 0, and there are discrete eigenvalues
solutions for k2 < 0 The glueball masses are given by:

M2
i = −k2

i > 0 (30.20)

as expected.
We can also get glueball masses in 4D, starting with D4 branes. The

problem is that the supergravity limit g → 0, g2N →∞ does not correspond
to the gauge theories we usually think about. We can see this by consider-
ing the intrinsic scale where the non-supersymmetric gauge theory becomes
strong compared to the effective cutoff where extra particle thresholds ap-
pear (T ). For QCD3 the intrinsic scale is given by the gauge coupling:

g2
3N = g2NT (30.21)

to keep this fixed as T →∞ we need to take g2N → 0 Similarly in QCD4

ΛQCD = exp

(
−24π2

11 g2N

)
T (30.22)

to keep this fixed as T →∞ we need to take g2N → 0.
So we can only do the calculation where the extra states have similar

masses to the glueballs we want. Things can be improved a little by con-
sidering rotating branes, there the KK modes associated with the compact
Euclidean time can be removed. Denoting the angular momentum of the
branes in the extra (S5) directions by a, and taking the large a limit. One
finds surprisingly good values for the masses. It is not known whether this
agreement is coincidental or has an underlying reason.
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state lattice N = 3 SUGRA a = 0 SUGRA a→∞
0++ 1.61± 0.15 1.61 (input) 1.61 (input)
0++∗ 2.48± 0.23 2.55 2.56
0−+ 2.59 ±0.13 2.00 2.56
0−+∗ 3.64 ±0.18 2.98 3.49

30.5 Breaking SUSY with Orbifolds

At large N we have:

Type IIB on AdS5 × S5 ⇔ N = 4CFT
KK−mode operator

↓ “orbifolding” S5 ↓

AdS5 × S5/G ⇔ N < 4 CFT
invariant KK−mode invariant operator

It is well known that the large N limit of the gauge theory is dominated
by planar diagrams. It has been shown that the planar diagrams of certain
orbifolded gauge theories that the planar diagrams are proportional to the
planar diagrams of the full theory up to a rescaling of the gauge coupling.
So in the large N limit these theories are also conformal. By orbifolding in
different ways we can break different amounts of SUSY:

SU(4) ⊃ G, SU(3) 6⊃ G ⇒ N = 0
SU(3) ⊃ G, SU(2) 6⊃ G ⇒ N = 1
SU(2) ⊃ G, ⇒ N = 0

The simplest case is G = Zk. We also need to specify how G is embedded
in the gauge group. To do this we need the regular representation of Zk:

γa = diag(ω0, ωa, ω2a, . . . , ω(k−1)a) (30.23)

where

ω = e2πi/k (30.24)
a = 0, 1, . . . , k − 1 (30.25)
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We can embed Zk in SU(kN) by defining

γa
N = diag(1N,1Nω

a,1Nω
2a, . . . ,1Nω

(k−1)a) (30.26)

so that the adjoint transforms as

Ad→ γa
NAd(γ

a
N )† (30.27)

The invariant pieces are k adjoints of k different SU(N)’s. The orbifolded
theories constructed using the regular representation in this fashion are the
set that remain conformal.

Take as example the Z6 orbifold where the embedding of Z6 in the global
SU(4) is such that the four fermion fields transform as:

ψ → (ωa, ω2a, ω3a, ω4a)ψ (30.28)

The gauge field transforms as

A→

ω0∗ ωa∗ ω2a∗ ω3a∗ ω4a∗ ω5a∗

ω0 I
ωa I
ω2a I
ω3a I
ω4a I
ω5a I

(30.29)

where I denotes the invariant sub-block. Consider the fermion component
that transforms as

ψ → ω2a

ω0∗ ωa∗ ω2a∗ ω3a∗ ω4a∗ ω5a∗

ω0 I
ωa I
ω2a I
ω3a I
ω4a I
ω5a I

(30.30)

The invariant fermions are obviously bifundamentals. The content of the
orbifolded theories can be summarized in a “moose” or “quiver” diagram.

Frampton and Vafa proposed that such theories could solve the hierarchy
problem if physics was conformal above 1 TeV, since an exactly conformal
theory has no quadratic divergences. However if we consider the effective
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theory below some scale µ and we can calculate the one-loop β functions
(using bird track notation is the easiest way to do it) and then set the β
functions to zero. One finds fixed points at

Y∗ = g

√
1− 1

N2
(30.31)

λi∗ = g2(1 +
ai

N2
+

bi
N4

+ . . .); i = 1, . . . , 5 (30.32)

(30.33)

and the one-loop scalar mass given by

m2
φ =

[
Nciλi + 3

N2 − 1
N

g2 − 8NY 2

]
µ2

16π2
(30.34)

IN the large N limit
∑

i ci = 5 and we recover the calN = 4 result that
there is no quadratic divergence. To leading order in N we have:

m2
φ =

3g2

N

µ2

16π2
. (30.35)

So to get mφ = 1 TeV, with µ = MPl we need N = 1028.
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